FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness.

نویسندگان

  • Hyun Joon Kong
  • Thomas R Polte
  • Eben Alsberg
  • David J Mooney
چکیده

The mechanical properties of cell adhesion substrates regulate cell phenotype, but the mechanism of this relation is currently unclear. It may involve the magnitude of traction force applied by the cell, and/or the ability of the cells to rearrange the cell adhesion molecules presented from the material. In this study, we describe a FRET technique that can be used to evaluate the mechanics of cell-material interactions at the molecular level and simultaneously quantify the cell-based nanoscale rearrangement of the material itself. We found that these events depended on the mechanical rigidity of the adhesion substrate. Furthermore, both the proliferation and differentiation of preosteoblasts (MC3T3-E1) correlated to the magnitude of force that cells generate to cluster the cell adhesion ligands, but not the extent of ligand clustering. Together, these data demonstrate the utility of FRET in analyzing cell-material interactions, and suggest that regulation of phenotype with substrate stiffness is related to alterations in cellular traction forces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Considerations of Micro- to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces

Mechanical interactions between cells and their surrounding extracellular matrix (ECM) play an important role in regulating many cellular functions, such as migration, proliferation and differentiation. Cells adhere to a substrate through an integrated process that involves binding and clustering of integrins to ECM ligands, actin polymerizationdriven plasma membrane extension, and contraction ...

متن کامل

Distinct impacts of substrate elasticity and ligand affinity on traction force evolution.

Cell adhesion is regulated by the mechanical characteristics of the cell environment. The influences of different parameters of the adhesive substrates are convoluted in the cell response leading to questions on the underlying mechanisms, like biochemical signaling on the level of adhesion molecules, or viscoelastic properties of substrates and cell. By a time-resolved analysis of traction forc...

متن کامل

Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness.

Cell migration plays a major role in many fundamental biological processes, such as morphogenesis, tumor metastasis, and wound healing. As they anchor and pull on their surroundings, adhering cells actively probe the stiffness of their environment. Current understanding is that traction forces exerted by cells arise mainly at mechanotransduction sites, called focal adhesions, whose size seems t...

متن کامل

Some basic questions on mechanosensing in cell–substrate interaction

Cells constantly probe their surrounding microenvironment by pushing and pulling on the extracellular matrix (ECM). While it is widely accepted that cell induced traction forces at the cell–matrix interface play essential roles in cell signaling, cell migration and tissue morphogenesis, a number of puzzling questions remain with respect to mechanosensing in cell–substrate interactions. Here we ...

متن کامل

Cell-cell mechanical communication through compliant substrates.

The role of matrix mechanics on cell behavior is under intense investigation. Cells exert contractile forces on their matrix and the matrix elasticity can alter these forces and cell migratory behavior. However, little is known about the contribution of matrix mechanics and cell-generated forces to stable cell-cell contact and tissue formation. Using matrices of varying stiffness and measuremen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 12  شماره 

صفحات  -

تاریخ انتشار 2005